AIR POLLUTION

CHAPTER EIGHTEEN

Outline

- 1. The Atmosphere layers, some major processes
- 2. Urban Air Pollution photochemical & industrial smog
- 3. Regional Air Pollution from Acid Deposition acid deposition, consequences, solutions
- 4. Indoor Air Pollution types, radon
- 5. Effects of Air Pollution human health, plants, aquatic life, property
- 6. Preventing & Reducing Air Pollution laws, technology

I. The Atmosphere

Troposphere:

- 75% of mass of Earth's air;
- Where greenhouse effect occurs: heat is trapped near Earth's surface;
- Also heated from beneath: solar radiation passes through the atmosphere and heats the Earth's surface

Stratosphere:

 Includes the ozone layer, which filters ultraviolet (UV) radiation

THE ATMOSPHERE

- The atmosphere is the thin layer of gases that surrounds the Earth
 - 78% nitrogen
 - 21% oxygen
 - 0.9% argon
 - 0.1% water vapor, carbon dioxide, neon, helium and other trace gases

- The Mesosphere extends from 50 km to about 80 km above the Earth
 - The coldest layer of the atmosphere, dropping as low as -90% C
- The Thermosphere extends from 80 km into outer space
 - The lower layer of the thermosphere is the ionosphere (80 km to 550 km)
 that can reflect radio waves back to Earth. It cannot reflect television waves,
 which have a shorter wavelength
 - The upper layer of the thermosphere is the exosphere, which extends for thousands of kilometers above the Earth, blending into the vacuum of interplanetary space

2. Urban Air Pollution

Pollutants include natural and human sources.
Primary pollutants can form secondary pollutants.

AIR POLLUTION

• Air pollution is the presence of one or more chemicals in the atmosphere in quantities and duration that cause harm to humans, other forms of life, and materials

- Primary pollutants: Products of natural events and human activities are called
- Secondary pollutants: Some primary pollutants may react with one another or with the basic components of air to form new pollutants called

MAJOR AIR POLLUTANTS

Carbon oxides	CO, CO ₂
Sulfur oxides	SO ₂ ,SO ₃
Nitrogen oxides	NO, NO ₂ , N ₂ O
Volatile organic compounds (VOCs)	Methane, propane, chlorofluorocarbons
Suspended particulate matter	Particles (dust, lead, soot) + liquids (PCBs, dioxins, pesticides)
Radioactive Substances	(radon-222, plutonium-239)
Photochemical oxidant	Ozone (O ₃), PANs, etc.
Hazardous air pollutants	Formaldehyde, etc.
Toxic Compounds	(mostly carcinogens)

Photochemical Smog

Photochemical smog: secondary pollutants (HNO $_3$ PANs, O $_3$) are formed in complex reactions involving input of energy from sun.

Industrial Smog

Industrial Smog: mostly sulfur dioxide, sulfuric acid suspended in droplets, and a variety of particulates (soot).

• Sulfur compounds in coal & oil react with oxygen to form sulfur dioxide (SO₂), a colorless suffocating gas;

$$S + O_2 \rightarrow SO_2$$

• In the troposphere some of the sulfur dioxide reacts with oxygen to form sulfur trioxide (SO₃), which then reacts with water vapor to form sulfuric acid (H₂SO₄).

$$2 SO_2 + O_2 -> SO_3 SO_3 + H_2O -> H_2SO_4$$

Thermal Inversions

Thermal inversions:

Cool air trapped beneath warm air. Leads to accumulation of dangerous levels of air pollution (photochemical smog, industrial smog) near the ground.

Air Pollution

Suspended particulate matter:

particles of solid matter and droplets of liquid released into the atmosphere by burning fossil fuels and other human activities.

3. Acid Deposition

Acid deposition: Secondary pollutants (acids) transported by winds descend to the Earth

ACID DEPOSITION

 Acid Deposition is the mixture of acidic rain, snow, fog, cloud vapor, and particles that reach the earth's surface.

Effects of acid deposition include

- Direct damage to plant foliage, bark and roots
- Soil acidification and death of microorganisms
- Lake acidification and stress of aquatic life

Sulfur dioxide dissolves in water vapor to form acidic solutions

Acid Deposition

A widespread problem, especially in areas downwind from major industrial sites.

- Potential problem areas because of sensitive soils
- Potential problem areas because of air pollution: emissions leading to acid deposition
- Current problem areas (including lakes and rivers)

4. Indoor Air Pollution

Para-dichlorobenzene Source: Air fresheners, mothball crystals Possible threat: Cancer

Carbon Monoxide

kerosene heaters.

Threat: Headaches.

drowsiness, irregular

woodstoves

heartbeat

Source: Faulty furances,

unvented gas stoves and

Tetrachloroethylene

Source: Dry-cleaning fluid fumes on clothes Possible threat: Nerve disorders, damage to liver and kidneys, possible cancer

Cloroform

Source: Chlorine-treated water in hot showers Possible threat: Cancer

1, 1, 1,

-Trichloroethane Source: Aerosol sprays

Threat: Dizziness, irregular breathing

Nitrogen Oxides Source: Unvented gas stoves and kerosene heaters, woodstoves Threat: Irritated lungs, children's colds, headaches

Asbestos Source: Pipe insulation, vinyl ceiling and floor tiles Threat: Lung disease, lung cancer

Tobacco Smoke Source: Cigarettes

Threat: Lung cancer, respiratory

Methylene Chloride Source: Paint strippers and thinners

Threat: Nerve disorders,

diabetes

Formaldehyde Source: Furniture stuffing, paneling, particleboard, foam linsulation Threat: Irritation of eyes, throat, skin, and lungs; nausea; dizziness

Benzo-a-pyrene Source: Tobacco smoke, woodstoves Threat: Lung cancer

Styrene Source: Carpets, plastic products Threat: Kidney and liver damage

Radon-22 Source: Radioactive soil and rock surrounding foundation, water supply Threat: Lung cancer

INDOOR AIR POLLUTION

- •Indoor air pollution can be an even greater health threat than outdoor air pollution.
- •Air pollution is not limited to the outdoors. Buildings with particularly poor air quality are said to have sick-building syndrome.
- •Causes of sick-building syndrome may include the presence of tobacco smoke, formaldehyde, gasoline, radon gas, asbestos, carbon monoxide, and some species of fungi and bacteria.

Indoor Air Pollution

Radon-222: A colorless, odorless, naturally occurring gas that is a breakdown <u>product of uranium</u>– 238 found in small amounts in most soil. Radon gas causes <u>lung</u> cancer & other health problems. Ventilation & proper building can prevent accumulation of this dangerous gas.

5. Effects of Air Pollution

Air pollution damages the health of humans and other living organisms, and also damages property.

Causes
respiratory
diseases in
humans: lung
cancer, asthma,
chronic
bronchitis, and
emphysema

HUMAN HEALTH

Exposure to air pollutants, particularly cigarette smoke may lead to several human health issues

- Lung cancer
- Asthma muscle spasms in the bronchial walls
- Chronic bronchitis —
 inflammation of cells lining
 the bronchi and
 bronchioles
- Emphysema damage to air sacs in lungs

Health Effects of Air Pollution

- Carbon monoxide (CO): reacts with hemoglobin in red blood cells & reduces ability of blood to carry oxygen;
- **Particulates**: long-term exposure contributes to lung disease & cancer, aggravates bronchitis and asthma;
- Sulfur dioxide (SO₂): causes constriction of airways and can cause bronchitis;
- Nitrogen oxides (especially NO₂): irritate lungs, cause conditions similar to bronchitis and emphysema;
- **Volatile organics** (& toxic particulates): cause mutations, reproductive problems, and cancer;
- **Ozone**: causes coughing, chest pain, shortness of breath, & eye, nose, and throat irritation.

More Effects of Air Pollution

Aquatic Life:

 high acidity (low pH) can leach harmful minerals such as aluminum into the environment, kill fish and other organisms, inhibit reproduction, disrupt food chains, & decrease productivity;

Property:

- air pollutants cause billions of dollars of damage to various materials (buildings estimated at \$5 billion annually);
- breaks down paints on cars and buildings, deteriorates roofing, etches stained glass windows, dissolves and discolors marble (see Table 10–3).

Effects of Air Pollution

Effects of prolonged exposure to atmospheric pollutants on trees and soils.

6. Preventing

& Reducing Air Pollution

GARS, GAS, AND AIR

- More than half of the ozone-forming pollutants come from mobile sources (i.e., cars and trucks)
- Other sources include:
 - Lawn mowers
 - House paint
 - Charcoal lighter fluid

Monthly commuting costs

Car (single occupant)		\$141
Sport Utility Vehicle		\$153
Carpool (2 persons)\$	71	
Vanpool (15 seater) \$	9	

Pollution from Vehicles (per year):

Pa	ssenger Cars	<u>SUVs</u>
CO ₂	15,200 lbs.	21,200
CO	420 lbs.	547
HC	55 lbs.	74
NO	50 lbs.	-
Particulates	2.7 lbs.	3.3

Technologies for Preventing & Reducing Air Pollution

Technologies to remove particulates from the exhaust of electric power and industrial plants. All produce hazardous waste that must be disposed of.

AUTOGLAVES VS. INGINERATION

- Waste heated by steam to sterilize
- Sterilized waste ground and shredded
- Compacted waste sent to a landfill

Preventing & Reducing Air Pollution

Methods for reducing emissions from motor vehicles.

Restrict driving in

polluted areas

Cleanup Emission control devices

> Car exhaust inspections twice a year

Stricter emission standards

Preventing & Reducing Air Pollution

- Emphasize pollution prevention
- Improve energy efficiency
- Reduce use of fossil fuels (especially coal and oil)
- Increase use of renewable energy
- Slow population growth
- Regulate air quality for entire regions
- Tax the production of air pollution
- Transfer appropriate technologies to developing countries

Laws for Preventing & Reducing Air Pollution

The Clean Air Acts of 1970, 1977, & 1990 provide federal air pollution regulations & require the Environmental Protection Agency (EPA) to establish national ambient air quality standards (NAAQS).

- NAAQS apply to seven outdoor pollutants: suspended particulate matter, sulfur oxides, carbon monoxide, nitrogen oxides, ozone, volatile organic compounds, & lead;
- **Prevention of significant deterioration** is a policy of the Clean Air Act, under which regions with air quality cleaner than that required by NAAQS are not allowed to deteriorate;
- National emission standards for toxic air pollutants require the EPA to regulate many toxic air pollutants.

Effectiveness of Laws

The Clean Air Act has worked.

- Between 1970 & 1997 levels of six major air pollutants decreased by 31%;
- Nitrogen dioxide levels have increased slightly, primarily from automobiles;
- A 1996 study by the EPA shows that benefits of the Clean Air Act greatly exceed costs: 1970–90 \$436 billion spent, health benefits of \$2.7 to \$14.6 trillion;
- Still EPA estimates that 107 million Americans live in areas that exceed at least one outdoor air pollution standard.

CLEAN AIR ACTS — DEFICIENCIES

- Continued reliance on pollution cleanup rather than prevention
- Failure to sharply increase fuel efficiency standards for cars and light trucks
- No requirement for stricter emission standards for fine particulates
- Giving municipal trash incinerators 30-year permits
- Weak standards for incinerators
- Weak standards for emissions of CO₂ and other greenhouse gases

