Geologic Processes

Continental Drift
Plate Tectonics
Earthquakes
Volcanoes

Geologic Processes

- Constant changes
- Driven by internal processes
 - Build up the planet's surface
 - Energy provided from heat in the interior
 - Causes the mantle to deform and flow

Fig. 10.3, p. 213

Pangea

Continental Drift

- Hypothesis proposed in 1912 by Alfred Wegener
- Initial Observations
 - Same fossils, landforms, glacial deposits, paleomagnetism across continents
 - Fit of continents
- Proposed that continents move very slowly over millions of years
- Rejected for failure to provide mechanism

Paleomagnetism

Theory of Plate Tectonics

- Accepted in early 1960's
 - Mechanism identified by Harry Hess's research on sea floor spreading
- Movement of tectonic/lithospheric plates
 - 60 miles thick
 - Made up of continental & oceanic crust
 - Different plates = different speeds
 - Move via mantle convection currents
 - Produces volcanoes, earthquakes, oceanic ridge system, & trenches
- Helps explain patterns of biological evolution

Fig. 10.5a, p. 214 Slide5

How the Plates Move: Mantle Convection Currents phere

- Rigid lithospheric plates on top of semifluid asthenosphere
- Powered by heat from core
- Hot rises, cold sinks
- Plates surf on the resulting motion

How the Plates Move on Mantle Convection Currents

All around the edge of the Pacific, ocean crust is being subducted beneath continental crust. As a result, the Pacific is surrounded by a chain of volcanoes - known as the Ring of Fire

How the Plates Move: Ridge Push

- Divergent boundary: rising edges of 2 convection cells push magma up at same location
- New crust pushes the older crust/lithospheric plates away from the area
- Produces
 - Mid-ocean ridges
 - New crust

How the Plates Move: Gravity/Slab Pull

- Convergent boundary: descending edges of 2 convection cells pull the denser crust (oceanic > continental) below the less dense crust
- Subducted plate melts into mantle
- Produces
 - Subduction zone
 - Trench
 - Volcanic Arc
 - Continental
 - Islandic
 - Earthquakes

Mid-Atlantic Ridge System

Earthquakes

- Sudden release of energy accompanies motion along fault line
- Focus vs. epicenter
- Richter scale is logarithmic (3.0 is 100 times stronger than 1.0)
- Environmental Impacts
 - Habitat—destruction via shaking and shifting of ground; possible rock slides; fire
 - Water—possible tsunamis; pollution following recession of flood water

Fault vs. Epicenter

Earthquakes

Volcanoes

- Magma breaches the crust through vent or crack
- Eject ash, cinders, lava, & gases (H₂O, CO₂, SO₂)
- Environmental impacts
 - Habitat—destroy current; form mountains & lakes; aids early succession species
 - Soil—can induce slides/erosion; enriched via ash and weathering of volcanic rock
 - Atmosphere—lower air quality; produces acid rain; ash blocks solar input

Volcanoes

Minimizing Geohazard Impacts

Predict & map likely locations

- Historical records
- Siesmic measurements
- Earthquakes: Improve structures
 - Engineering & technology
 - Establish/modify building codes
- Volcanoes
 - Adjust land use
 - Effective evacuation plans