Ecosystems & Energy

Components Energy Flow

Life is sustained by:

- One-way flow of energy
- Cycling of matter & nutrients
- Gravity: holds planet's atmosphere

Sun's Role

- Light, warmth, & energy for photosynthesis
- Powers cycling of matter
- Drives the climate and weather systems
- Most of light to earth is ultraviolet
 - ~28% reflected back into space by clouds, dust, and land
 - ~72% warms air & land, evaporates water, generates winds and global air & water currents
 - Only about .023% is used by plants for photosynthesis

Earth's Energy Budget

Nutrient Cycles aka Biogeochemical Cycles

- Nutrient—any atom, ion or molecule an organism needs to live
 - Macronutrients: needed in large amounts;
 CHONPS & a few others
 - Micronutrients: needed in small or trace amounts
- Driven by the sun
- Main ones: hydrologic, nitrogen, carbon, phosphorus, & sulfur

Types of Systems

- Earth = closed system
 - Receives energy from sun but loses no matter into space
 - Recycles nutrients
- Organisms = open systems
 - Exchange matter & energy between the system and the environment
 - Take in matter and energy, use it, & put waste back into environment

Ecology

• Study of the <u>relationships</u> between organisms and their environment a.k.a How organisms <u>interact</u> with their nonliving environment such as sunlight, temperature, moisture, nutrients, etc.

Ecology & the Spheres

Organisms

- Organism—any biological entity capable of replication/transferring is genetic material
 - *Interest piece--Evolution: What is an Organism?
- Eucaryotic—surrounded by membrane; have distinct nucleus; have internal organelles; all organisms except bacteria
- Procaryotic—surrounded by membrane; nave NO distinct nucleus; no internal body parts surrounded by membranes; bacteria

Species

- Species—group of organisms capable of interbreeding AND producing viable offspring
- Sexual vs. asexual reproduction
- Number of species on earth is not known
 - 5 million to 100 million maybe
- Wild species found in natural habitat
- Domestic species have been taken out of natural setting & therefore play a smaller role

Population

- A group of organisms of the same species in a given area at a given time
 - Can vary with:
 - Season
 - Time of day
 - Time of year
- Density = number of organisms ÷ area

Habitat

- Where an organism or population normally lives
- Provides the particular resources needed for that organism
- Part of biosphere
 - Subdivided into biomes based on climate & types of organisms (primarily vegetation)
 - Includes aquatic life zones (ocean, lakes, rivers, riparian zones, wetlands, etc.)
- Can be large or small (ex. Intestines of a cow vs. Atlantic Ocean)

Biomes

Community

Populations of all species in a particular place at a particular time.

Ecosystem

- Community of different species interacting with one another and their nonliving environments.
- Can be small or large
- All combined = biosphere
- Components:
 - Biotic—living
 - Abiotic—nonliving (water, nutrients, air, solar energy, etc.)

Abiotic Factors: Limiting Factors

- Any one factor that is responsible for regulating population growth
 - Light, water
 - In aquatic ecosystems
 - D.O.
 - Sunlight
 - Temperature

Populations: Range of Tolerance

- Ability to survive within variations of a physical or chemical environment
 - Individuals within a population may have differing ranges of tolerance
- Tolerance limit—point/level beyond which no member of a species is able to survive

Populations: Range of Tolerance

Energy Flow within an Ecosystem

- Moves from one trophic level to the next
 - Trophic Level—organism's position within food chain
 - Food chains combine to form food webs
- Unidirectional flow sun → organisms → environment → space high quality low quality heat

Food Web vs. Food Chain

Energy Flow within an Ecosystem

Energy Flow within an Ecosystem

- Ecological Efficiency:
 - Percentage of usable biomass transferred from one trophic level to the next
 - On average, only $\sim 10\%$ (range of 2 40%)
- Cellular respiration at EVERY level
 - Conversion of potential energy (chemical) into kinetic energy (electrical/mechanical)

Respiration:

• Aerobic:

$$C_6 H_{12} O_6 + 6 O_2 \rightarrow 6$$

- $CO_2 + 6 H_2O + 38 ATP$
- Anaerobic (aka fermentation)
 - Plants: $C_2H_5OH + 2 CO_2 + 2 ATP$

$$C_6H_{12}O_6 \rightarrow$$
 ethanol

– Animals:

$$C_6H_{12}O_6 \rightarrow C_3H_6O_3$$
 lactic acid

- End products include CH₄, ethyl alcohol, acetic

acid, and H₂S (hydrogen sulfide)

Role: Producers

- Trophic Level: autotrophs (1)
- Photosynthetic:
 - Land and most aquatic autotrophs

- In the deep ocean
- Use heat energy from the thermal vents to convert dissolved hydrogen sulfide and carbon dioxide into organic nutrient molecules

Role: Carnivores/Omnivores

- Trophic Level:
 - Primary Consumer (2)
 - Secondary Consumer (3)
 - Tertiary Consumer (4)
- Rarely get higher than 4 trophic levels (ecological efficiency)

Role: Decomposers

- Obtain energy via decaying organisms
- Often the end of transfer of energy between organisms; return nutrients back to environment
- 2 groups
 - Fungi—actually decompose the organisms and absorb the nutrients
 - Detritivores—consume the decaying material

Bioaccumulation

Contaminant Levels

TIME

Contaminant Levels

Biomagnification